

Securing the Tabular BI Semantic Model

SQL Server Technical Article

Writers:Cathy Dumas, Business Intelligence Consultant, Avantage Partners

Kasper de Jonge, Senior Program Manager, Microsoft

Contributors: Marius Dumitru, Akshai Mirchandani, Bob Meyers, Siva Harinath, Bradley

Ouellette, Greg Galloway, Howie Dickerman

Technical Reviewer: Nick Medveditskov, Edward Melomed, Owen Duncan, and Dave Wickert,

Microsoft; Thomas Ivarsson, Sigma AB

Published:April 2012, Updated April 2016

Applies to: SQL Server 2012, SQL Server 2014, SQL Server 2016, Azure Analysis Services,

Power BI

Summary:This paper introduces the security model for tabular BI semantic and Power BI. You

will learn how to create roles, implement dynamic security, configure impersonation settings,

manage roles, and choose a method for connecting to models that works in your network

security context.

Copyright

This document is provided “as-is”. Information and views expressed in this document, including

URL and other Internet Web site references, may change without notice. You bear the risk of

using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real

association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal, reference purposes.

© 2016Microsoft. All rights reserved.

Contents
Copyright ... 2

Introduction .. 4

Sample data files .. 5

Security model overview .. 5

Permissions .. 5

Connecting to tabular models ... 8

Impersonation ... 9

Creating roles .. 9

Using the Role Manager in SQL Server Data Tools ...10

Testing roles ..10

Deploying models with roles ..13

Dynamic security ...14

Modeling patterns for dynamic security ..14

Enabling dynamic security using Tabular models before SQL Server 201614

Example: Implementing security for a model using the USERNAME() function15

Example: Securing the model using the CUSTOMDATA() function25

Example: Securing a model using parent/child hierarchies ..29

Enabling dynamic security using Tabular models using bi-directional relationships.35

Example: Dynamic row level security and bidirectional relationships36

Managing roles and permissions ...40

Adding and removing administrators from a tabular instance ...40

Using SQL Server Management Studio to manage roles ...41

Using AMO to manage roles ..42

Using AMO for PowerShell to manage roles ..43

Managing connections to relational data sources from Analysis Services44

Managing connections to the tabular model ..46

Connecting directly to a tabular model using a connection string ...46

Connecting to a tabular model using a .bism file ..47

Connecting to a tabular model using an .rsds file ..49

Connecting to a tabular model from a middle-tier application ...50

Security in the modeling environment (SQL Server Data Tools) ..51

Security in DirectQuery enabled models before SQL Server 2016 ..52

Security in DirectQuery enabled models post SQL Server 2016 ...52

Example: Leveraging SQL Server Row Level Security ..53

Conclusion ..59

Additional resources ...59

Introduction

With the release of Microsoft SQL Server 2012, Analysis Services introduces the BI semantic

model. The BI semantic model includes both traditional multidimensional models developed by

BI professionals and deployed to SQL Server Analysis Services, and the new tabular model.

Tabular models are secured differently than multidimensional models. Some concepts remain

the same – Windows users or groups are added to roles, and a set of security permissions is

defined on a per-role basis. These permissions determine whether the user can administer,

process, or read data from the model. However, where multidimensional models define read

permissions using cell and dimension security, tabular models use a row security model. The

set of allowed rows in a table can be restricted by using a row filter defined in Data Analysis

Expressions (DAX). Row filters can be static or dynamic. Static filters show the same set of

allowed rows to all role members. Dynamic filters vary the set of allowed rows per-user based

on the user name or connection string.

This whitepaperdescribes the tabular security model and demonstrates how to create and

manage roles. This paper also describes the security considerations to take for handling

credentials when connecting to a tabular model and when connecting to a relational data source

for processing.

This paper contains several examples of both static and dynamic security. The dynamic security

examples include step-by-step instructions for creating models that implement security based

on the currently logged on Windows user name or based on custom data passed to Analysis

Services. Two different methods are used to apply row filters – one using many-to-many

relationships in DAX, and one using a more computational approach.

You will better understand the examples in this whitepaper if you are already familiar with DAX,

especially the concepts of row context, filter context, and many-to-many relationships. For a

quick introduction to DAX, see QuickStart: Learn DAX Basics in 30 Minutes

(https://support.office.com/en-us/article/QuickStart-Learn-DAX-Basics-in-30-Minutes-51744643-

C2A5-436A-BDF6-C895762BEC1A).

With the release of SQL Server 2016, the Tabular model was updated and with it came support

for many-to-many patterns that change the way you can do row level security with the tabular

model. We will cover both mechanism of row level security in this whitepaper, one pre-SQL

Server 2016 and the new technique that can be used with any release post SQL Server

https://support.office.com/en-us/article/QuickStart-Learn-DAX-Basics-in-30-Minutes-51744643-C2A5-436A-BDF6-C895762BEC1A

2016and Azure Analysis Services. Since Power BI shares it’s analytical engine with SQL Server

Analysis Services the techniques showed here today can also be used in Power BI.

Sample data files
Some examples in this whitepaper are based on the AdventureWorksDW2012 data file. This

sample database is available for download at

http://msftdbprodsamples.codeplex.com/releases/view/55330.

Other sample files included as part of this whitepaper include:

 The CustomDataExample solution, which includes a tabular model that implements

dynamic security using the CUSTOMDATA() function and a C# test client that connects

to the tabular model

 The OrganizationalSurveyExample project, which includes a tabular model that

implements dynamic security based on a user hierarchy

 The OrganizationalSurveyExample.xlsx file, which is the data source for the

OrganizationalSurveyExample project.

These files can be downloaded from http://securitytabularbi.codeplex.com/.

The samples on how to use bi-directional cross filtering for Dynamic security can be found here:

https://www.kasperonbi.com/power-bi-desktop-dynamic-security-cheat-sheet/

This sample file applies to SQL Server 2016 and later, Azure Analysis Services and Power BI.

Security model overview
This section describes the core security concepts for the tabular model: permissions,

connectivity, and impersonation.

Permissions
Server instances, databases, and rows within a database can be secured. Other objects, such

as tables, columns, cells, and perspectives cannot be secured.

At the server instance level, users can be granted administrative permissions. Server

administrators have administrative permissions on all databases on the server, so they can

read, alter, and process any database on the tabular instance. Also, only server administrators

can create, delete, attach, and detach databases on a tabular instance.

At the database level, users can create roles, assign permissions to roles and add other

Windows users or groups to roles. Roles can be assigned administrative, process, and/or read

permissions. Users in a role with administrative permissions on a database can alter, back up,

process, and read all in-memory data in the database. Also, users with administrative

permissions on a database can restore the database over a previous version on the server.

Users in a role with only processing permissions cannot read any data or metadata in the

model; however, they can process data via automation or script. Users in a role with

http://msftdbprodsamples.codeplex.com/releases/view/55330
http://securitytabularbi.codeplex.com/
https://www.kasperonbi.com/power-bi-desktop-dynamic-security-cheat-sheet/

unrestricted read permission can view all in-memory data in the model; however, they cannot

read the model metadata.

Note When a model is queried in DirectQuery mode, security permissions defined on the

SQL Server data source apply when reading data. For more information, see “Security in

DirectQuery enabled models”.

Read permissions can be further refined by applying row filters to tables in the model. A row

filter determines the set of rows that a user is allowed to see in a table. Row filters are defined

by specifying a DAX expression that evaluates to a Boolean (true/false) value for each row in a

table.

Note DirectQuery enabled models do not support row filters.

For example, consider a simple model for analyzing sales, as shown in Figure 1. This model

has two tables – Product and Sales – with a one-to-many relationship between the Product and

Sales tables. The Sales table can be summarized by sales amount using the Sum of

SalesAmount measure.

Figure 1:A simple model with a one-to-many relationship

Consider what happens when a row filter is applied to the Product table with the DAX

expression =Product[ProductID]=1. When a user in the read role issues a query on the Product

table, each row is checked to see if the value of the [ProductID] field is 1 and, if so, the row is

allowed in the row set and is returned in the query results. Figure 2 shows the process for

applying the row filter to the Product table and the resulting pivot table.

Evaluate filter

=Product[ProductID]=1

True
False

False

ResultsQuery

Figure 2:Evaluating an incoming query on the Product table when there is a row filter on that

table

Row filters applied to a table also filter related tables. This means that if there is a one-to-many

relationship between table A and table B, and a row filter is applied to table A, the set of allowed

rows in table B is also restricted according to the filter.

Consider the effect of the row filter defined in Figure 2on the Sales table. Because there is a

one-to-many relationship between Product and Sales, the filter on the Product table also applies

to the Sales table. Figure 3 shows the effect of the row filter on the Sales table.

Evaluate filter

=Product[ProductID]=1

True

False

ResultsQuery True

True
False

False

Figure 3:Evaluating an incoming query on the Sales table when there is a row filter on the

Product table

Filtering does not work in the opposite direction – any filters applied to table B do not apply to

table A. For example, if you define a row filter on the Sales table =Sales[ProductID]=1, this filter has

no effect on the Product table. If you want a filter on the many side of a one-to-many

relationship to affect the related table, you must apply a filter to both tables and use a many-to-

many relationship pattern to restrict the allowed row set.

When multiple row filters are applied to a role, a user in the role can see only the rows allowed

by both filters. This means that if a row filter is applied to table A and a row filter is applied to

table B, the allowed row set for the user is restricted on both table A and table B. Moreover, if

there is a one to many relationship between table A and table B, and a row filter is applied to

both tables, the allowed row set for table B is affected by both row filters, and only those rows

allowed by both filters are shown.

For example, if you define a row filter on the Product table =Product[ProductID]=1and a row filter on

the Sales table =Sales[TransactionID]<=3, the Sales table is affected by both filters. Figure 4 shows

the effect of the row filters on the Sales table.

Evaluate filters

=Product[ProductID]=1

=Sales[TransactionID]<=3

True

False

ResultsQuery True

False
False

False

Figure 4:Evaluating an incoming query on the Sales table when there is a row filter on both the

Sales and Product tables

Row filters can be static or dynamic. Most row filters are static row filters. When a static row

filter is applied, all role members see the same data set. However, when the USERNAME() or

CUSTOMDATA() functions are used in the DAX filter, the row filter becomes a dynamic row

filter. Dynamic filters change the set of allowed rows based on the currently logged on Windows

user name or based on security information passed in the connection string.

A role can be assigned multiple permissions. For example, you can assign both read and

process permissions to a role. In this case, role members have all rights associated with all

assigned permissions.

You can add a user or group to multiple roles. If a user is a member of multiple roles, they have

all of the rights associated with all assigned roles. For example, if a user is a member of both an

administrative and read role, the user can administer the database. Another example occurs

when a user is a member of multiple read roles with row filters applied. Consider the following

scenario: A tabular model is created with two read roles, Role 1 and Role 2. Role 1 restricts

access to Table A using a row filter, and Role 2 restricts access to the unrelated Table B using

another row filter. If a user is a member of both Role 1 and Role 2, that user can see all data in

both Table A and Table B. This is because Role 1 allows unrestricted access to Table B, and

Role 2 allows unrestricted access to Table A.

Unlike in the multidimensional model, there is no concept of a deny permission in the tabular

model. Permissions simply define the set of operations that users can perform (such as

processing or altering the database) and the set of data that users can see. A user in a role with

lower permissions can always be granted access to objects and granted permissions to perform

operations by adding that user to a different with additional permissions.

Only Windows users and groups can be added to roles. Although users of client applications

that query tabular models may connect to reports using credentials other than Windows

credentials, these credentials are always mapped to Windows credentials by the application

hosting the report (for example, Microsoft Internet Information Services (IIS) or SQL Server

Reporting Services).

For more information about roles and permissions, see Roles

(https://docs.microsoft.com/sql/analysis-services/tabular-models/roles-ssas-tabular).

Connecting to tabular models
End users connect to tabular models in a number of different ways. For example:

 A user can connect directly to the tabular model from a client application, such as

Microsoft Excel, Power BI Desktop, or SQL Server Management Studio, by specifying a

connection string to Analysis Services.

 A user can connect to the tabular model using a connection specified in a BI semantic

model file (.bism).

https://docs.microsoft.com/sql/analysis-services/tabular-models/roles-ssas-tabular

 A user can connect to Power View or Reporting Services using a report server data

source file (.rsds), and Power View or Reporting Services in turn connects to Analysis

Services.

 A user can connect to a middle-tier application, such as an ASP.NET web application,

and the middle-tier application in turn connects to Analysis Services.

The method used to connect to the tabular model determines which users you will add to roles

in the model, the privileges granted to the Analysis Services service account, and also the

privileges granted to service accounts running the Power View, Reporting Services, or middle-

tier application connecting to Analysis Services.

Any method for connecting to the tabular model besides directly establishing a connection using

a connection string introduces the possibility of a double-hop – that is, it is possible that

credentials will need to be passed to an intermediary (such as Reporting Services, SharePoint,

or a middle-tier application) which in turn will need to delegate credentials to Analysis Services.

Care must be taken to ensure that delegation of credentials is successful. This may involve

configuring Kerberos or elevating privileges of the intermediary service account. Later sections

of this paper discuss the security requirements in different connectivity scenarios.

Impersonation
When data is loaded into a tabular model, the Analysis Services engine supplies a set of

credentials to the relational data source. These credentials are then used to read data from the

relational data source. Analysis Services can connect to the relational data source using the

credentials of its service account, or it may impersonate another user when connecting to the

data source. Impersonation information is specified on each data source in the model, and

optionally on the tabular database itself. For more information about impersonation in tabular

models, seeImpersonation(https://docs.microsoft.com/sql/analysis-services/tabular-

models/impersonation-ssas-tabular).aspx).

DirectQuery enabled models support additional impersonation information. This is because

DirectQuery enabled models can connect to a relational data source in two scenarios – when

the model is queried and when the model is processed (for DirectQuery enabled models in

hybrid mode). Because there is one additional scenario for connections, there is one additional

set of impersonation settings, called the DirectQuery impersonation setting, that can be

configured to allow Analysis Services to impersonate the current user when querying the data

source.

Whenever Analysis Services impersonates another user, that user must have at least read

access to the relational data source. If the impersonated user does not have sufficient

privileges, the query or processing attempt fails.

Creating roles
Roles can be created when the model is developed in SQL Server Data Tools, or when the

model is administered in SQL Server Management Studio.

https://docs.microsoft.com/sql/analysis-services/tabular-models/impersonation-ssas-tabular

We recommend that you create roles in SQL Server Data Tools. Writing logic in DAX for

defining read permission to the database is a task best suited for a BI developer, not a database

or server administrator. Using SQL Server Data Tools allows the role definitions to be checked

in to source control, so modifications can be tracked over time. The Role Manager in SQL

Server Data Tools provides functionality that is unavailable in SQL Server Management Studio,

such as validation for DAX syntax and semantic errors. Also, Analysis Management Objects

(AMO) is not well suited for creating roles because the AMO object model for modifying role

permissions is complex.

We recommend that you add role members after deployment, either in SQL Server

Management Studio or using automation. If you add role members in SQL Server Data Tools,

these users will be able to read the workspace database as you are developing the model,

which is often undesirable. Also, adding role members is a task best suited for an administrator,

not a BI developer. BI developers may not have access to the production system, and therefore

may not have permission to add the Windows users to roles. Also, role membership changes

over time and typically changes more frequently than the model itself.

We also recommend that you add Windows groups, and not individual Windows users, as role

members whenever possible. This eases administration because group membership changes in

Active Directory Domain Services (AD DS) automatically propagate to Analysis Services.

We do not recommend that you add role members in SQL Server Data Tools. If you add role

members in the development environment, you can accidentally overwrite changes made in

production to the list of role members when you deploy the model. The only time you should add

role members (usually Windows groups) in the development environment is when dynamic

security is applied to a model. The easiest way to test dynamic security is to add role members.

These role members should be removed before you deploy the model.

Because roles are defined in one place, and role membership is defined in another place, care

must be taken when deploying models with security defined. If models are deployed directly

from SQL Server Data Tools, the role membership will not be preserved. We recommend that

you deploy models with roles using the Deployment Wizard. The Deployment Wizard provides

functionality for preserving role membership.

Using the Role Manager in SQL Server Data Tools
Roles are created in SQL Server Data Tools using the Role Manager. For more information

about using the Role Manager, see Create and Manage Roles

(https://docs.microsoft.com/sql/analysis-services/tabular-models/create-and-manage-roles-ssas-

tabular). For a tutorial that includes step-by-step instructions on how to create basic roles and

roles with row filters, see Lesson 12: Create Roles (https://docs.microsoft.com/ sql/analysis-

services/lesson-11-create-roles).

Testing roles
You can test roles using the Analyze in Excel feature in SQL Server Data Tools.For more

information about using Analyze in Excel, see Analyze in Excel

(https://docs.microsoft.com/sql/analysis-services/tabular-models/analyze-in-excel-ssas-

https://docs.microsoft.com/sql/analysis-services/tabular-models/create-and-manage-roles-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/lesson-11-create-roles
https://docs.microsoft.com/sql/analysis-services/tabular-models/analyze-in-excel-ssas-tabular

tabular).For a tutorial that includes step-by-step instructions on using Analyze in Excel,

seeLesson 12: Analyze in Excel(https://docs.microsoft.com/sql/analysis-services/lesson-12-

analyze-in-excelFor information about installing Excel on a machine with SQL Server Data

Tools installed, seeWorking with the ACE provider in the tabular

designer(http://blogs.msdn.com/b/cathyk/archive/2011/09/29/working-with-the-ace-provider-in-

the-tabular-designer.aspx).

You can test security for one or more roles and for one or more role members using Analyze in

Excel. If you have not implemented dynamic security, we recommend that you only test roles in

the development environment, because you do not need to add role members.

If you cannot install Excel on the machine with SQL Server Data Tools installed, you can test

roles during development in one of the following ways:

 You can connect to the workspace database in SQL Server Management Studio using

the default connection string and then browse the database, specifying the role or user

name in the user interface.

 You can connect to the workspace database in SQL Server Management Studio and

specify the name of the user or role that you want to test as an additional connection

parameter.

 You can use Excel on another machine to connect to the workspace database and

specify the name of the user or role that you want to test in the connection string to

Analysis Services.

SQL Server Management Studio provides a user interface that you can use to change the role

or user when browsing the model.

To test a role or user in the browser in SQL Server Management Studio:

1. From Object Explorer, right-click the database that you want to test and then click

Browse.

2. On the Cube menu, click Security Context.

or

On the toolbar in the browser, click the security icon.

3. Select the role(s) or user(s) that you want to test.

You can only use the browser in SQL Server Management Studio to test Multidimensional

Expressions (MDX) queries. If you want to test DAX queries or XML for Analysis(XMLA)

commands, you must specify the role or user name before connecting to Analysis Services. To

do this, add the Roles parameter or the EffectiveUserNameparameter to the connection string

for the tabular instance.

To use the Roles or EffectiveUserNameparameters in SQL Server Management Studio:

1. From Object Explorer, click Connect and then click Analysis Services.

2. Type the name of the tabular instance hosting the workspace database in the Server

Name box.

https://docs.microsoft.com/sql/analysis-services/lesson-12-analyze-in-excel
http://blogs.msdn.com/b/cathyk/archive/2011/09/29/working-with-the-ace-provider-in-the-tabular-designer.aspx
http://blogs.msdn.com/b/cathyk/archive/2011/09/29/working-with-the-ace-provider-in-the-tabular-designer.aspx

3. Click Options.

4. Click the Additional Connection Parameters tab. In the box, specify one of two things:

 To test a role, type Roles=<role name>. To test multiple roles, type Roles=<role

name 1>,<role name 2>

 To test a user, type EffectiveUserName=<Windows user name> where

<Windows user name> is in the form DOMAIN\username

5. Click Connect.

Now you can execute queries and commands that use the security context of the specified role

or user. Note that the Object Explorer in SQL Server Management Studio does not change to

reflect the effective user name or role; only query or command results are affected by the user

or role name change.

Another way to test security is to use Excel on a different machine to connect to the workspace

database. To do this, add the Roles parameter or the EffectiveUserName parameter to the

connection string for the tabular instance.

To use the Roles or EffectiveUserName parameters in Excel:

1. Start Excel.

2. On the Data tab, in the Get External Data group, click From Other Sources, and then

click From Analysis Services.

3. Type the name of the tabular instance hosting the workspace database in the Server

Name box and then click Next.

4. Select the workspace database from the list of databases and then click Finish.

5. In the Import Data box, click Properties.

6. Click the Definition tab.

7. In the Connection string box, append one of the following strings to the existing

connection string:

 To test a role, type ;Roles=<role name>. To test multiple roles, type

;Roles=<role name 1>,<role name 2>

 To test a user, type ;EffectiveUserName=<Windows user name> where

<Windows user name> is in the form DOMAIN\username.

8. Click OK to close the Properties box, and then click OK to close the Import Data box.

You can only use the EffectiveUserName or Roles connection string parameters to test security

if you are a server administrator on the tabular instance hosting the database that you want to

test. If you are testing in a development environment on the workspace database this is not

usually a problem because you must be an administrator on the instance to use SQL Server

Data Tools.

If you are connecting to the workspace database from another machine, ensure that the firewall

rules on the machine running the workspace database server instance allow incoming

connections to Analysis Services. If you used the default installation options for Analysis

Services, you must open port 2383 on the firewall to incoming connections. For more

information about firewall configuration, see Configure the Windows Firewall to Allow Analysis

Services Access(https://docs.microsoft.com/sql/analysis-services/instances/configure-the-

windows-firewall-to-allow-analysis-services-access).

Deploying models with roles
Because roles are created in one place and role membership is managed in another, we

recommend that you use the Deployment Wizard to deploy models with roles. The Deployment

Wizard is a stand-alone utility included with the SQL Server management tools that you can use

to deploy both multidimensional and tabular models. For more information about using the

Deployment Wizard, seeDeploy Model Solutions Using the Deployment

Wizard(https://docs.microsoft.com/ sql/analysis-services/multidimensional-models/deploy-

model-solutions-using-the-deployment-wizard).

When you deploy the model using the Deployment Wizard, ensure that you use the Deploy

roles and retain members setting, as pictured in Figure 5. This ensures that metadata

changes made in the Role Manager in SQL Server Data Tools are deployed to the server, but

the role membership remains unchanged.

https://docs.microsoft.com/sql/analysis-services/instances/configure-the-windows-firewall-to-allow-analysis-services-access
https://docs.microsoft.com/sql/analysis-services/instances/configure-the-windows-firewall-to-allow-analysis-services-access
https://docs.microsoft.com/sql/analysis-services/multidimensional-models/deploy-model-solutions-using-the-deployment-wizard
https://docs.microsoft.com/sql/analysis-services/multidimensional-models/deploy-model-solutions-using-the-deployment-wizard
https://docs.microsoft.com/sql/analysis-services/multidimensional-models/deploy-model-solutions-using-the-deployment-wizard

Figure 5:Deployment Wizard with the Deploy roles and retain members setting highlighted

Dynamic security
Dynamic security is useful in many scenarios, and this paper provides a few examples. In one

scenario, access to sales data isgranted based on geographical areas. In another scenario,

access to organizational data isgranted in such a way that users can see data for themselves

and for their reports (if any), but cannot see data for their manager or for their peers.

Dynamic security is implemented using the USERNAME() and CUSTOMDATA() functions in the

row filter definition for a table. The USERNAME() function returns the name, in the form

DOMAIN\user name, of the Windows user connected to the model. This is typically the currently

logged on Windows user. However, if an administrator on the database is impersonating a

different user by adding the EffectiveUserName to the connection string (either manually or

using the Analyze in Excel function), this impersonated user’s name is returned by the

USERNAME() function. The CUSTOMDATA() function returns a string embedded in the

connection string used to connect to Analysis Services. This function is helpful when dynamic

security is implemented in an environment where the Windows user name is not available.

Note Do not use CUSTOMDATA() to configure security for a model when a client is

connecting directly to Analysis Services. This is not secure. A user that manually crafts a

connection string may see data that the user is not intended to see, resulting in

information disclosure. Only use the CUSTOMDATA() function to configure security for a

model that is used by a middle-tier application.

Modeling patterns for dynamic security
There are some common modeling patterns for implementing dynamic security, regardless of

the method used to implement security (USERNAME() or CUSTOMDATA()). Allowed values

can be stored in a relational data source, such as SQL Server, and managed by an

administrator. The table with the allowed values is then imported into the tabular model and

related to the table to be secured.

There is a one-to-many relationship between the two tables, with one value in the table to be

secured related to many rows in the security table. Recall that row security cascades in the one-

to-many direction, not in the many-to-one direction. That means it is impossible to apply a filter

directly to the security table and have it apply to the table that you want to secure. Instead, to

implement security, a many-to-many relationship pattern must be used. As many-to-many

patterns were not supported in the Tabular model until SQL Server 2016, we will discuss both

methods: one pre-SQL Server 2016 and one post SQL Server 2016, where we are able to have

filters flow in the many-to-one direction.

Enabling dynamic security using Tabular models before SQL Server 2016
To create a model for dynamic security:

1. Create a two-column security table in the relational data source. In the first column,

specify the list of Windows user names or custom data values. In the second column,

specify the data values that you want to allow users to access for a column in a given

table.

2. Import the security table into the tabular model using the Import Wizard.

3. Using the Import Wizard, create a one column table that contains the user names or

custom data values for the model. The values in this table must be unique. This table

does not need to be materialized in the relational data source; instead, it can be

constructed in the Import Wizard by querying the security table for the unique user

names or custom data values.

4. Create a relationship between the security table and the column that is being secured.

5. Create a relationship between the bridge table created in step 3 and the security table

created in step 2.

6. [optional] Add supporting calculated columns or measures for computing the row filter on

the table that contains the column that you want to secure.

7. Create a role in the Role Manager with Read permission.

8. Set the row filter for the security table to =FALSE().

9. Set the row filter for the bridge table to restrict the allowed row set to the currently logged

on Windows user or to the custom data value using a row filter like =[Column

Name]=USERNAME() or =[Column Name]=CUSTOMDATA().

10. Set the row filter on the table that you want to secure using one of the methods

described in the examples that follow.

There should be one security table per column that contains values that you want to secure. If

you want to secure multiple values, create multiple security tables and create relationships and

row filters as described earlier.

You can take other approaches to data modeling for dynamic security in other scenarios. If you

are securing data in a parent/child hierarchy where the allowed rows are defined by the level in

the hierarchy, you do not need and an external data source for the security table and you do not

need to use the many-to-many modeling pattern. The section “Example: Securing a model using

parent/child hierarchies” describes this modeling pattern. Also, instead of storing the security

information in a relational data source like SQL Server, you can manage security using security

groups in Active Directory Domain Services (AD DS) and query these groups from the tabular

model using a third-party component or using the Microsoft OLE DB Provider for Microsoft

Directory Services. A detailed discussion of that implementation is out of the scope of this

document; however, you can use the many-to-many relational modeling techniques illustrated

here to implement dynamic security in that environment.

Example: Implementing security for a model using the USERNAME() function
In this example, security for the Internet sales data in the AdventureWorks database is

implemented by sales territory. Each Windows user with access to the tabular model has

access to sales by one or more sales territories. The mapping of user names to allowed sales

territories is pasted into the tabular model.

Before you begin, select a set of users on your domain to use for testing purposes. You can

create test accounts in Active Directory Domain Services (AD DS) or use other users’ accounts

on the domain. You do not need to know the passwords to these accounts. It is helpful if these

users are all members of one group in the domain, so the group can be added as a role

member instead of individual users. Also, if you are not familiar with DAX, you should familiarize

yourself with some basic DAX concepts, especially row context and filter context, before you

begin. For a quick introduction to DAX, see QuickStart: Learn DAX Basics in 30 Minutes

(https://support.office.com/en-us/article/QuickStart-Learn-DAX-Basics-in-30-Minutes-51744643-

C2A5-436A-BDF6-C895762BEC1A).

To begin, first import the required data from AdventureWorks. To do this:

1. Launch SQL Server Data Tools and then create a new tabular project.

2. On the Model menu, click Import from Data Source to launch the Import Wizard.

or

On the Analysis Services toolbar, click the database icon.

3. Click Next to use Microsoft SQL Server as the data source.

4. Enter the server name and the database name for the AdventureWorksDW2012 data

source and then click Next.

5. Enter the user name and password for a Windows user with at least read permission on

the AdventureWorksDW2012 database and then click Next.

6. Click Next to import tables using Preview and Filter.

7. Click the check box next to the FactInternetSales table to select it, click Select Related

Tables to get some related dimensions, and then click Finish.

Seven tables and the relationships between them are imported, as shown in Figure 6.

https://support.office.com/en-us/article/QuickStart-Learn-DAX-Basics-in-30-Minutes-51744643-c2a5-436a-bdf6-c895762bec1a?CorrelationId=92830991-f7e8-426c-84f1-c266fa268fa6&ui=en-US&rs=en-US&ad=US&fromAR=1&ocmsassetID=HA102891601

Figure 6:The tabular model after you have imported the tables and relationships from the

AdventureWorks database

Next, create a measure to use for testing purposes:

1. With the model in Data View, click the sheet tab for the FactInternetSales table.

2. Select the SalesAmount column.

3. On the Column menu, point to AutoSum and then click Sum.

Or

On the Analysis Services toolbar, click the sigma icon.

The tabular model now contains a measure named Sum of SalesAmount that reports on

Internet sales, as shown in Figure 7.

Figure 7:Sum of the SalesAmount measure

Next, prepare the security table:

1. Copy and paste the following table into Excel:

User Name Allowed Sales Territory

DOMAIN\testuser1 6

DOMAIN\testuser2 1

DOMAIN\testuser2 2

DOMAIN\testuser2 3

DOMAIN\testuser2 4

DOMAIN\testuser2 5

DOMAIN\testuser2 6

Table 1:The Security table

2. Change DOMAIN\testuser1 and DOMAIN\testuser2 to users on your local domain.

3. Select the modified table and then copy it.

4. Click the tabular model in SQL Server Data Tools.

5. On the Edit menu, click Paste. The Paste Preview dialog box appears.

6. Set the table name to Security, and then click OK.

The tabular model now contains a pasted security table, as shown in Figure 8.

Figure 8:The pasted Security table. Note that you should change the user names to the names

of users in your domain before pasting this table into the model.

Next, prepare the user table:

1. Copy and paste the following table into Excel:

User Name

DOMAIN\testuser1

DOMAIN\testuser2

Table 2:The Users table

2. Change DOMAIN\testuser1 and DOMAIN\testuser2 to users on your local domain.

3. Select the modified table and then copy it.

4. Click the tabular model in SQL Server Data Tools.

5. On the Edit menu, click Paste. The Paste Preview dialog box appears.

6. Set the table name to Users, and then click OK.

You have now added all of the required tables to the tabular model to implement dynamic

security.

Next, create the relationships between the Security table, the Users table, and the

DimSalesTerritory table:

1. On the Model menu, point to Model View, and then click Diagram View to switch to

Diagram View.

or

Click the diagram icon at the bottom right corner of the tabular model.

2. Scroll to the Users table.

3. Drag the User Name column on the Users table and drop it on the User Name column

on the Security table to create a relationship.

4. Scroll to the DimSalesTerritory table.

5. Drag the SalesTerritoryKey column on the DimSalesTerritory table and drop it onto the

Allowed Sales Territory column on the Security table.

Figure 9 shows a subset of the model after the tables have been added and the relationships

created.

Figure 9:The tabular model after you have added all tables and relationships

Note the following relationships:

 One-to-many relationship between the Users table and the Security table

 One-to-many relationship between the DimSalesTerritory table and the Security table

These relationships will be used by the DAX filters to apply security.

Next, hide the Security and Users tables to prevent them from showing in the field list in client

reporting tools like Excel. Note that this is not a security measure. Hiding the fields reduces

clutter in the field list, becausethese tables are not intended to be queried by end users.

To hide the Security and Users tables:

1. Hold down the Ctrl key and then click the Security and Users tables.

2. Right click the tables and then click Hide from Client Tools.

Next, apply three row filters:

 The Security table is filtered to prevent users from reading the assigned permissions.

This information should not be disclosed to end users. This filter has no effect on any

other table in the model because there are no one-to-many relationships from the

Security table to other tables.

 The Users table is filtered to restrict the set of allowed rows to the currently logged on

Windows user.Alone, this filter would affect the Security table due to the relationship

between the Users and the Security table; however,because a more restrictive filter has

already been placed on the Security table, the filter has no visible effects. This filter

indirectly impacts the DimSalesTerritory table.

 The DimSalesTerritory table is filtered to restrict the list of sales territories to the set of

allowed sales territories for the currently logged on Windows user. The filter on the

DimSalesTerritory table relies on the existence of the filter on the Users table, because

the filtered Users table is used as a parameter in the DAX row filter on the

DimSalesTerritory table. The filter on the DimSalesTerritory table directly affects the

FactInternetSales table due to the one-to-many relationshipbetween those two tables.

This paper shows two approaches to filtering rows. One approach uses a generalized many-to-

many relationship pattern in DAX to look up matching sales territory values based on the filters

applied to the Users table. The other approach is more mathematical in nature, and it computes

the allowed row set by counting the number of unfiltered rows in the Security table. The second

approach is shorter and faster but perhaps less intuitive because it doesn’t reference the

column being filtered.

To apply the row filters using a generalized many to many DAX pattern:

1. On the Model menu, click Roles.

or

On the Analysis Services toolbar, click the role icon.

2. Click New to create a role.

3. Set the permissions for the role to Read. The area for setting DAX filters is enabled.

4. Set the DAX Filter for the Security table to =FALSE(). This expression hides all rows from

the Security table.

5. Set the DAX Filter for the Users table to =[User Name]=USERNAME().This expression checks

each row in the Users table, and allows the row to be shown if the value in the row

matches the current Windows user’s name. For users with Read access, this row filter

will yield either zero or one matching rows in the table, with one row returned if the

currently logged on Windows user appears in the Users table and zero rows returned

otherwise.

6. Set the DAX Filter for the DimSalesTerritory table to

=[SalesTerritoryKey]=CALCULATE(VALUES('Security'[Allowed Sales Territory]), SUMMARIZE('Security',

Security[User Name]), 'Security'[User Name]=USERNAME()).

To understand the row filter on the DimSalesTerritory a bit better, let’s break it down into the

individual syntax elements. Figure 10 shows the syntax elements for the DAX filter.

[SalesTerritoryKey]
=
CALCULATE(

VALUES('Security'[Allowed Sales Territory]),
SUMMARIZE(

'Security',
Security[User Name]

),
'Security'[User Name] = USERNAME()

)

C D

H

E
F

G

A
B

Figure 10:The DAX filter for the DimSalesTerritory table

The following list describes the syntax elements as numbered in Figure 10:

A. The left side of the row filter. This is a reference to the SalesTerritoryKey column in the

DimSalesTerritory table. This expression is evaluated in a row context, as illustrated in

Figures 2 and 3 in the “Permissions” section. Each time this expression is evaluated, the

expression returns a single value – the current SalesTerritoryKey value in the current

row.

B. The equality operator checks to see whether the current row for DimSalesTerritory table

exists in the Security table for the currently logged on user. This is done by comparing

the results of expression A with the results of expression C. If A and C are equal, the row

in the DimSalesTerritory table is allowed; otherwise, the row is not allowed.

C. The right side of the row filter. The function CALCULATE() evaluates the expression H in

the current row context. The row filter uses the CALCULATE() function so that the DAX

engine can evaluate the expression with additional filters that take advantage of the

many-to-many relationship between the DimSalesTerritory and the Security tables.

These filters are specified by expressions D and G.

D. The function SUMMARIZE() creates a single-column in-memory table. This in-memory

table contains only the unique user names in the Security table. SUMMARIZE() takes

two parameters, E and F, which specify the columns to put in the in-memory table.The

SUMMARIZE() reduces the set of user names to only the unique values. This in-memory

table is calculated in the context of expression G. This table contains 0 or 1 rows.

E. A reference to the Security table.

F. A reference to the [User Name] column in the Security table.

G. This Boolean expression restricts the set of rows in the in-memory table created by

expression D to only those rows corresponding to the currently logged on Windows user.

This restriction is applied by checking to see if the User Name column matches the

results returned by the USERNAME() function. If the results match, the user name is

added the in-memory table; otherwise, the table is blank.

H. The VALUES() function constructs another in-memory table that contains the set of

allowed sales territories for the currently logged on Windows user in the current row

context. This calculation is performed by looking up all of the rows for the currently

logged on user in the Security table (as filtered by expressions D and G) and fetching

the values for the Allowed Sales Territory column. This function returns either one value

– the key for the currently selected row in the DimSalesTerritory table – or blank. The

reason that at most one value is returned is because of the chain of relationships

between the Security table, the Users table and the DimSalesTerritory table. The row

context on the DimSalesTerritory table is applied implicitly on the Security table because

of the one-to-many relationship between the DimSalesTerritory table and the Security

table, thus ensuring a unique value for the Allowed Sales Territory column. The

relationship between the Users and the Security table and the filters applied in D and G

ensure that there is a unique value for the User Name column.

This calculation is pretty fast because the SUMMARIZE() function in expression D does not

iterate over all of the rows of the Security table to create the in-memory table used for the

calculation. However, an even faster approach is to count the number of unfiltered rows in the

Security table, instead of computing the set of allowed sales territory values.

To apply row filters by counting the number of rows in the Security table:

1. On the Model menu, point to Model View, and then click Data View to switch to Data

View.

or

Click the grid icon at the bottom right corner of the tabular model.

2. Click the sheet tab for the Security table.

3. Click anywhere in the Measure Grid on the Security table, and then type the measure

Count Security:=COUNTROWS(Security). This measure counts the number of rows in the

Security table.

4. Right click the Count Security measure and then click Hide from Client Tools. This

measure is not needed for analysis.

5. On the Model menu, click Roles.

or

On the Analysis Services toolbar, click the role icon.

6. Click New to create a role.

7. Set the permissions for the role to Read. The area for setting DAX filters is enabled.

8. Set the DAX Filter for the Security table to =FALSE(). This expression hides all rows from

the Security table.

9. Set the DAX Filter for the Users table to =[User Name]=USERNAME().This expression checks

each row in the Users table, and allows the row to be shown if the value in the row

matches the current Windows user’s name. For users with Read access, this row filter

will yield either zero or one matching rows in the table, with one row returned if the

currently logged on Windows user appears in the Users table and zero rows returned

otherwise.

10. Set the DAX filter for the DimSalesTerritory table to =CALCULATE(Security[Count Security],

Security[User Name]=USERNAME()) > 0

To understand the row filter on the DimSalesTerritory a bit better, let’s break it down into the

individual syntax elements. Figure 11 shows the syntax elements for the DAX filter.

CALCULATE(
Security[Count Security],
Security[User Name] = USERNAME()

)
> 0

A B
C

D

Figure 11:The DAX filter for the DimSalesTerritory table

The following list describes the syntax elements as numbered in Figure 11.

A. The function CALCULATE() evaluates the expression B in the current row context. The

row filter uses the CALCULATE() function so that the DAX engine can evaluate the

expression with an additional filter, specified by expression C, that takes advantage of

the many-to-many relationship between the DimSalesTerritory and the Security tables.

B. This measure counts the number of rows in the Security table. This measure returns

either 1 or blank. The reason the number of rows in the table is at most 1 is because of

the chain of relationships between the Security table, the Users table, and the

DimSalesTerritory table. The row context on the DimSalesTerritory table is applied

implicitly on the Security table because of the one-to-many relationship between the

DimSalesTerritory table and the Security table, thus ensuring a unique value for the

Allowed Sales Territory column. The relationship between the Users and the Security

table and the filter applied in C ensures that there is a unique value for the User Name

column, and therefore at most one row to be counted in the table.

C. This Boolean expression restricts the set of rows counted in expression B to only those

rows corresponding to the currently logged on Windows user. This restriction is applied

by checking to see whether the User Name column matches the results returned by the

USERNAME() function. If the results match, the row is counted; otherwise, the row is not

counted.

D. If the result of expression B is greater than 0, the row in the DimSalesTerritory table is

allowed; otherwise; the row is not allowed.

Now that you have applied the row filter to the table, you can test the role. To test the role using

the Analyze in Excel feature:

1. Click the Members tab in the Role Manager.

2. Add DOMAIN\testuser1 and DOMAIN\testuser2 as role members, substituting users on

your domain for these placeholder values.

or

Add a Windows group that has both DOMAIN\testuser1 and DOMAIN\testuser2 to the

list of role members.

3. Click OK to close the Role Manager.

4. On the Model menu, click Analyze in Excel.

or

On the Analysis Services toolbar, click the Excel icon.

5. Check the Other Windows User button, and then click Browse.

6. In the Enter the object name to select box, type DOMAIN\testuser1, substituting a user

on your domain for this placeholder value.

In Excel, you can now construct a pivot table. Drop DimSalesTerritoryKey on rows and Sum of

SalesAmount on values. The pivot table will reflect the row security filters that you applied, and

only the values for the test users on your domain appear.

Example: Securing the model using the CUSTOMDATA() function
In this example, security for the Internet sales data in the AdventureWorks database is

configured by sales territory, just as in the previous example. A client applicationmaps user

names, which do not correspond to Windows user names, to custom data values. These custom

data values correspond to one or more allowed sales territories in the tabular model. When

users connect to the model using the client application, they can see only the allowed sales

territories specified using the custom data value in the connection string.

Note This example is provided for illustration purposes only. Do not secure a client

application using custom data in production. Only use custom data to secure middle-tier

applications.

The data model for this example is very similar to the one in the previous example, so this paper

does not provide step-by-step instructions for preparing the data model. Instead, you can view

the tabular model in the CustomDataTest project included with the sample files. You will prepare

the data model for your development environment, explore the model, deploy the model, and

then test it using the C# client provided.

To configure the CustomDataTest project for your development environment:

1. Open the CustomDataExample solution.

2. From Solution Explorer, double-click to open the Model.bim file.

3. On the Model menu, click Existing Connections.

or

On the Analysis Services toolbar, click the connection icon.

4. Click Edit to modify the connection string to the AdventureWorks database.

5. Change the Server name to the name of the SQL Server instance hosting your copy of

the AdventureWorks database. Save your changes.

6. On the Model menu, point to Process and then click Process All.

or

On the Analysis Services toolbar, click the process icon.

7. On the Model menu, click Roles.

or

On the Analysis Services toolbar, click the role icon.

8. Click the Members tab.

9. Add a user on your domain to the list of members. This user must not have

administrative access to the Analysis Services instance to which you are deploying the

model. Also, you must know the password of this user, as you must start the test client

with this user’s credentials.

10. Click OK to close the Role Manager.

Now that you have configured the model and loaded data into it, you can explore the model.

There are a few differences from the previous example. The Security table contains the

following values.

CustomDataValue Allowed Sales Territory

MichaelBlythe 6

HanyingFeng 1

HanyingFeng 2

HanyingFeng 3

HanyingFeng 4

HanyingFeng 5

HanyingFeng 6

Table 3:The Security table

The User Name column was replaced with a CustomDataValue column, which contains the

custom data values used in the client application.

Also, the Users table from the previous example was replaced with a CustomDataValues table.

That table contains the following values.

CustomDataValue

MichaelBlythe

HanyingFeng

Table 4:The CustomDataValues table

Again, this table is very similar to the structure of the Users table. The CustomDataValues table

contains the set of unique values for the custom data values. It serves the same purpose as the

Users table as well – the table functions as a bridge table between the Security table and the

DimSalesTerritory table. Relationships are defined between the Security table, the

CustomDataValues table, and the DimSalesTerritory table so that the row filters cross-filter the

appropriate tables.

Open the Role Manager and take a look at the row filters defined on the Read role. The filter on

the Security table remains the same – it is set to =FALSE() so that users are not allowed to see the

allowed sales territories in the Security table. The row filter on the CustomDataValues table is

set to =[CustomDataValue]=CUSTOMDATA(). Again, this filter is conceptually similar to the one set on

the Users table in the previous example, except that the custom data value passed to Analysis

Services in the connection string is used for dynamic security instead of the currently logged on

Windows user’s name. The row filter on the DimSalesTerritory table takes the generalized

many-to-many approach presented in the previous example. The row filter is set to

=[SalesTerritoryKey]=CALCULATE(VALUES('Security'[AllowedSalesTerritory]), SUMMARIZE('Security',

Security[CustomDataValue]), 'Security'[CustomDataValue]=CUSTOMDATA()). Again, the only difference

between the custom data example and the username example is the substitution of the

[CustomDataValue] column for the [User Name] column and the substitution of the

CUSTOMDATA() function for the USERNAME() function.

After you have configured and explored the model, you can deploy it and test it. The sample

application is configured to deploy the model to a tabular instance located at

localhost\TABULAR. To deploy to a different location, change the Server property in the

CustomDataTest project properties before deployment. To deploy the project, from Solution

Explorer right-click the CustomDataTest project and then click Deploy.

You can now test the dynamic security using the test client. The code for the test client is in the

WinFormsCustomDataExample project in the CustomDataExample solution. As the name of the

project suggests, the test client has a GUI interface written in WinForms. Figure 12 shows the

test client.

Figure 12:The test client for the model using CUSTOMDATA() for security

To use the test client, select one of the values in the User name box and then click Get Sales

Territories. The click event handler for the Get Sales Territories button maps the supplied user

name to a custom data value for the model, appends the custom data value to the connection

string for Analysis Services, establishes an ADOMD.NET connection to the model, executes a

DAX query to get the data from the DimSalesTerritory table, and then displays the results in a

data grid.

The following code listing shows the logic in the Get Sales Territory button click event handler.

The logic for supplying the custom data value to Analysis Services is highlighted.

DataTable results = newDataTable();
String connectionString = "Data Source=localhost\\Tabular;Initial
Catalog=CustomDataTest;Provider=MSOLAP.5;Integrated Security=SSPI;Impersonation
Level=Impersonate;CustomData=" + comboUserName.SelectedItem.ToString().Replace("
", string.Empty);

using (AdomdConnection connection = newAdomdConnection(connectionString))
{
 connection.Open();
AdomdCommand command = newAdomdCommand("evaluate DimSalesTerritory order by
DimSalesTerritory[SalesTerritoryKey]", connection);
AdomdDataAdapter adaptor = newAdomdDataAdapter(command);
 adaptor.Fill(results);
 gridViewResults.DataSource = results.DefaultView;
}

The client sends the custom data value to the tabular model in the connection string to Analysis

Services.

You cannot verify the functionality of the test client by running it from the development

environment. This is because you have administrative permission on the deployment server, so

you can read all of the data in the model. To verify the functionality, you must build the test

client and run it as the user with read permission on the tabular model instead.

To run the test client:

1. If you did not deploy your tabular model to an instance named localhost\Tabular, change

the value of the connectionString variable to match the name of the deployment server.

2. From Solution Explorer, right-click the WinFormsCustomDataExample project and then

click Build.

3. Right-click the WinFormsCustomDataExample project and then click Open Folder in

Windows Explorer.

4. Copy the file bin\Debug\WinFormsCustomDataExample.exe to a location accessible to

the user that you granted read access to the tabular model. For simplicity, this example

will assume that you copied the file to C:\WinFormsCustomDataExample.exe.

5. From the Start menu, click Command Prompt.

6. At the prompt, type runas /user:DOMAIN\username C:\WinFormsCustomDataExample.exe

Replace the placeholder with the name of the user with read access to the tabular

model.

You can now experiment with the test client and verify that the security works correctly.

The logic in the button click event handler can be migrated to a web application such as an

ASP.NET web application. If you are using this code from ASP.NET, grant read permission on

the tabular model to the user running the Application Pool for the web application. End users of

the web application must not have read access to the tabular model. The web application must

authenticate the end users, map the users to a custom data value, and then connect to Analysis

Services, passing the appropriate custom data value in the connection string.

Note that you can only use this example security technique from a middle-tier application that

has full control over the connection string to Analysis Services, so it can add custom parameters

to the connection string. If you are using a middle-tier application that doesn’t control the

connection string directly on a per-connection basis (such as Reporting Services), you cannot

use this security method.

Example: Securing a model using parent/child hierarchies
In this example, information given by employees in response to a survey will be secured.

Employees are members of a single organization, with a ragged organizational hierarchy that is

up to six levels deep. Each Windows user with access to the tabular model will have access to

survey responses for themselves and for those reporting to them (directly or indirectly) in the

organization. Users cannot see responses from their peers or responses from those higher up in

the organization.

This example is based on data in an Excel workbook. Parts of the tabular model were

constructed for you. Your task is to add row security to the model, write a measure for analysis,

and construct a pivot table with row security in place.

Before you begin, prepare the data in the Excel workbook:

1. Copy the OrganizationalSurveyExample.xlsx file to a location accessible to the Analysis

Services workspace database server. Analysis Services will read data from this file.

2. Open the OrganizationalSurveyExample.xlsx file.

3. Click the Employees tab.

4. Change the UserAlias for a few users to the Windows user namesof users in your local

domain. You should change the UserAlias values for users in different levels of the

hierarchy to test the effects of the row filter. Changing the aliases of andreas0, andy0,

and douglas0 achieves this goal.

5. Save and close the Excel file.

Next, prepare the OrganizationalSurveyExample project for analysis:

1. Open the OrganizationalSurveyExample project.

2. On the Model menu, click Existing Connections.

or

On the Analysis Services toolbar, click the connection icon.

3. Click Edit to modify the connection string to the Excel workbook.

4. Click Browse and then navigate to the location of OrganizationalSurveyExample.xlsx.

Save your changes.

5. On the Model menu, point to Process and then click Process All.

or

On the Analysis Services toolbar, click the process icon.

The data is loaded into the tabular model and you are ready to add security.

First, take some time to explore the data model in Data View. There are five tables in this

model. There is a table of employee information, a table with survey questions, a table of survey

responses, and two tables that provide more information about questions and responses.

The Employees table contains several columns of source data and several calculated columns.

Two columns of source data, UserID and Manager, form a parent/child relationship. To turn this

parent/child relationship into a hierarchy, some DAX calculations are performed in calculated

columns. The UserAliasWithDomain column prepends the domain name to the user alias. The

OrgHierarchyPath column expands fully the parent/child relationships between the employee

and the manager. The individual levels in the hierarchy are computed in the Level1 through

Level6 calculated columns. The PATH() and PATHITEM() functions perform these calculations.

For more information about creating calculations for parent/child hierarchies, see PowerPivot

Denali: Parent child using DAX (http://www.powerpivotblog.nl/powerpivot-denali-parent-child-

using-dax). Note that the OrgHierarchyPath contains user aliases, not user IDs, because this

makes the row filter for dynamic security easier to understand.

Switch to the Diagram View and look at the Employees table. The calculated columns for

computing the levels of the hierarchy are greyed out, indicating that they are hidden from the

client tools. Also, you can now see the Employee hierarchy, as illustrated in Figure 13. This

hierarchy contains the Level1 through Level6 calculated columns in order. This Employee

hierarchy can be dropped into a pivot table, and users can click to expand each individual node

in the hierarchy to view child levels. For more information about building hierarchies, see Create

and Manage Hierarchies (https://docs.microsoft.com/sql/analysis-services/tabular-

models/create-and-manage-hierarchies-ssas-tabular) and Lesson 9: Create Hierarchies

(https://docs.microsoft.com/sql/analysis-services/lesson-9-create-hierarchies).

http://www.powerpivotblog.nl/powerpivot-denali-parent-child-using-dax
http://www.powerpivotblog.nl/powerpivot-denali-parent-child-using-dax
https://docs.microsoft.com/sql/analysis-services/tabular-models/create-and-manage-hierarchies-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/tabular-models/create-and-manage-hierarchies-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/tabular-models/create-and-manage-hierarchies-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/lesson-9-create-hierarchies

Figure 13:The Employee hierarchy in the Employees table

With this data model in place, you can now implement dynamic security.

To implement dynamic security:

1. With the tabular model in Data View, click the Employees table.

2. Click the UserAliasWithDomain column.

3. In the formula bar, replace domain with the name of your domain, in lowercase letters.

4. On the Model menu, click Roles.

or

On the Analysis Services toolbar, click the role icon.

5. Click New to create a role.

6. Set the permissions for the role to Read. The area for setting DAX filters is enabled.

7. Set the DAX Filter for the Employees table to =PATHCONTAINS([OrgHierarchyPath], USERNAME())

8. Click the Members tab.

9. Click Add.

10. In the Enter the object name to select box, type domain\andreas0, domain\douglas0,

and domain\andy0, substituting users on your domain for these placeholder values.

or

Click Object Types and then click Groups. In the Enter the object name to select box,

type the name of a Windows group that contains the users andreas0, douglas0, and

andy0.

The row filter uses the PATHCONTAINS function to see if the hierarchy for the current row

contains the name of the currently logged on Windows user and, if so, allows the row to be

added to the allowed row set. The first parameter to PATHCONTAINS, [OrgHierarchyPath],

contains the hierarchy. The second parameter, USERNAME(), contains the user name.

PATHCONTAINS returns true if the currently logged on Windows user’s alias exists in the

hierarchy, thus allowing the row, and false otherwise.

Compared to the previous examples, implementing dynamic security here is relatively simple.

This is because the security filter is set on a single table, so there is no need to traverse

relationships to calculate the allowed row set.

Next, compute the number of people in a user’s organization, either directly or indirectly.

Normally when you use hierarchies, this calculation is simple: if you create a measure on the

Employees table with the formula COUNT[UserID], resultsroll up all the way to the parent. Figure 14

shows the number of employees in the user andreas0’s organization using this formula, as

shown when andreas0 connects to the tabular model.

Figure 14:A pivot table showing the values for a measure with the formulaCOUNT[UserID]when

using andreas0’s credentials

When row security is applied, parent rows can be filtered out of the allowed row set. Although a

user can see the parent in a hierarchy, because the name of the parent is stored in a calculated

column in an allowed row, the user is not allowed to see the total number of employees for the

parent. This is because visual totals are always enabled, so users can see totals only for those

rows they are allowed to see. Since the parent’s total includes rows that the

Figure 15 shows the same pivot table when connected to the tabular model as douglas0.

Figure 15:A pivot table showing the values for a measure with the formula COUNT[UserID]when

using douglas0’s credentials

The number of users in andreas0’s organization has reduced from 86 to 16, which does not

accurately reflect the total number of people in andreas0’s organization.

For this reason, we do not recommend using hierarchies in pivot tables when row security

applies. Although there is a way to compute the correct total values in the hierarchy, the

computation requires some complex DAX expressions and is therefore not recommended.

When row security is applied to hierarchies, you should only drop columns into pivot tables. The

DAX formulas for measures should then be written so that they are accurate when columns are

used in analysis.

The formula for counting the number of employees in a user’s organization becomes more

complex when you are not using the hierarchy to automatically count the number of employees

at each level of the hierarchy. You must do this summarization in DAX.

To create a measure that counts the number of employees in a user’s organization:

1. With the tabular model in Data View, click the sheet tab for the Employees table.

2. Click anywhere in the Measure Grid.

3. Paste the following measure into the formula bar:

Number in Organization:=IF(HASONEVALUE(Employees[UserID]),

COUNTROWS(FILTER(ALL(Employees),PATHCONTAINS(Employees[OrgHierarchyPath],VALUES(Employees[Us

erAlias])))),

BLANK())

To understand the measure a bit better, let’s break it down into the individual syntax elements.

Figure 16 shows the syntax elements for the measure.

IF(
HASONEVALUE(Employees[UserID]),
COUNTROWS(

FILTER(
ALL(Employees),
PATHCONTAINS(

Employees[OrgHierarchyPath],
VALUES(Employees[UserAlias])

)
)

),
BLANK()

)

A

B

C

D E

F

G H
I

Figure 16:The syntax elements for the Number in Organization measure

The following list describes the syntax elements as numbered in Figure 16.

A. The IF() function performs basic validation. The number of people in the organization is

returned only if one employee is selected in the filter context; otherwise, the measure

returns blank. The IF function takes three parameters: expressions B, D, and C.

B. The HASONEVALUE() function checks to see whether there is one single value for the

UserID column and returns TRUE in that case. Usually you will get a single value by

dropping a unique column, such as UserAlias or UserID, into the Row Labels area of a

pivot table,

C. The BLANK() function is the return value for the measure if there is more than one

employee selected.

D. The COUNTROWS() function counts the number of people in the organization of the

selected employee. COUNTROWS() counts the number of rows in an in-memory table

constructed by expression E.

E. The FILTER() function constructs an in-memory table with the list of all people in the

selected user’s organization. FILTER() takes two parameters: expressions F and G.

F. The ALL() function removes the filter context from the Employees table so that all rows

in the Employee table are available for use by expressions D and E. Previously,

expression B verified that there is exactly one row in the Employee table – the row for

the currently selected employee. The ALL() function removes this filter.

G. This parameter of expression E adds a filter to the table calculated in expression F,

restricting the number of rows in the table to be counted by expression D. The

PATHCONTAINS() function is evaluated for each row in the table constructed in

expression F, and returns true (thus allowing the row to remain in the table constructed

in expression E) if the currently selected user exists in the organizational hierarchy for

the row and false (thus removing the row from the table constructed in expression E)

otherwise. PATHCONTAINS() takes two parameters, H (the user hierarchy) and I (the

search value).

H. A reference to the OrgHierarchyPath column in the Employees table.

I. The VALUES() function returns the string representation of the currently selected

employee’s alias. Again, an employee is usually selected by dropping the ID or Alias of

the employee into the Row Labels area of a pivot table, and the selection reflects the

row in the pivot table. The VALUES() function takes a single parameter, which is a

reference to the UserAlias column. The UserAlias column is used because the

organizational hierarchy is constructed of aliases, so an alias must be used to search the

hierarchy.

Figure 17 shows the number of employees for each user in douglas0’s organization:

Figure 17:A pivot table showing the values for the Number in Organization measurewhen using

douglas0’s credentials

Notice that row security restricts the number of rows to only those directly or indirectly reporting

to Douglas0, and the number in organization is computed per user. Note that this measure is

not additive and should never be summarized in a grand total calculation.

Enabling dynamic security using Tabular models using bi-directional

relationships.

To create a model for dynamic security:

1. Create a security table in the relational data source that at least contains a column with a

list of Windows user names or custom data values. Every user needs to be unique in this

table.

2. Create a two-column bridge table in the relational data source. In the first column,

specify the same list of Windows user names or custom data values. In the second

column, specify the data values that you want to allow users to access for a column in a

given table. Usually the same values as you want to secure in your dimension.

3. Import both tables into the tabular model using the Table Import Wizard.

4. Create a relationship between the bridge table and the column that is being secured in

the dimension table. The key here is to turn on Bi-directional relationships for this

relationship and also enable the security filter.

5. Create a relationship between the bridge table created in step 2 and the security table

created in step 1.

6. By using Role Manager, create a role with Read permission.

7. Set the row filter for the security table to =[Column Name]=USERNAME() or =[Column

Name]=CUSTOMDATA().

There should be one security table per column that contains values that you want to secure. If

you want to secure multiple values, create multiple security tables and create relationships and

row filters as described earlier.

Example: Dynamic row level security and bi-directional relationships
In this example, we will look at how to implement Dynamic Row Level security by using Bi-

Directional Cross filtering as it is available in SQL Server 2016, Power BI and Azure Analysis

Services. More information on Bi Directional Cross filtering is available in this whitepaper.

Both RLS and bi-directional relationships work by filtering data. Bi-directional relationships

explicitly filter data when the columns are actually used on axis, rows, columns or filters in a

PivotTable or any other visuals. RLS implicitly filters data based on the expressions defined in

the roles.

In this example, we have three tables: Customer, Region and their Sales. We want to add

dynamic row level security to this model based on the user name or login id of the user currently

logged on, I want to secure my model not per region, but a grouping of regions called

GlobalRegion.

This is the schema for the model:

https://msdn.microsoft.com/en-us/library/jj127437.aspx

Next, I add a table that declares which user belongs to a globalregion:

The goal here is to restrict access to the data based on the user name the user uses to connect

to the model. The data looks like this:

To solve this problem without bi-directional cross-filtering, we would use some complicated DAX

to a row level security expression on the region table that will determine the global region the

current connected user has access to. To do that we can create this DAX expression:

=Region[GlobalRegion]=LOOKUPVALUE(Security[GlobalRegion]

 , Security[UserId], USERNAME()

 , Region[GlobalRegion], Security[GlobalRegion])

This would create a filter on the Region table and return just the rows in the Region table as

returned by the DAX expression from the Security table. This DAX expression will look up any

values for GlobalRegion based on the username of the user connecting to the SSAS model.

This is a pretty complicated scenario and won’t work for models in DirectQuery mode as the

LOOKUPVALUE function isn’t supported. For that reason, we introduced a new property in SQL

Server 2016 that will allow you to leverage bi-directional cross-filtering to enable the same

scenario.

Note: when using Power BI you should use the USERPRINCIPALNAME() function

instead of the USERNAME() function. This will make sure the actual username will get

returned, USERNAME will give you an internal representation of the username in Power

BI. For Azure Analysis service both functions will return the Azure AD UPN.

Let’s take a look at how we would model this using bi-directional relationships. Instead of

leveraging the DAX function to find the username and filter the table, we’ll be using the

relationships in the model itself. By extending the model with some additional tables and the

new bi-directional cross-filter relationship we can make this possible:

Observe we now have a separate User table and a separate GlobalRegions tables with an

bridge table in the middle that connects the table to be secured with the security table. The

relationship between User and GlobalRegion is a many to many relationship as a user can

belong to many global regions and a global region can contain many users.

The idea here is that we can add a simple row level security filter on the User[UserId] column

like =USERNAME() and this filter will now be applied to all of the related tables:

There one more item to cover, as you can see the relationship between Security and

GlobalRegions is set to bidirectional cross-filtering, by default this will not be honored for RLS

scenarios. Luckily there is a way to get this working for RLS scenarios as well. To turn it on I go

to the diagram view in SSDT and select the relationship:

Here I can select the property that applies the filter direction when using Row Level Security.

This property only works for certain models and is designed to follow the above pattern with

dynamic row level security as shown in the example above. Trying to use this in for other

patterns might not work and Analysis Services might throw an error to warn you.

Now this is the basic pattern for dynamic row level security using bi-directional relationships,

many of the other examples like using CUSTOMDATA() from above can be used as variation on

this theme as well.

Managing roles and permissions
After you have deployed a model with roles, you (or your server administrator) must perform

some security-related management tasks. Usually, this is limited to adding or removing role

members, but you can also create, edit, and delete roles and add or remove administrators on

the tabular instance. You can perform management tasks using any management tool for

Analysis Services, including SQL Server Management Studio, AMO, and AMO for PowerShell.

You can also use XMLA scripts to manage roles, though a discussion of XMLA for role

management is outside the scope of this document.

Adding and removing administrators from a tabular instance
If you installed your tabular instance of Analysis Services using the default configuration

settings, the following users are administrators on the tabular instance:

 Members of the local administrator group on the machine where Analysis Services is

installed

 The service account for Analysis Services

 Any user that you specified as an administrator in SQL Server setup

You can change these settings after you have installed the tabular instance by modifying the

server properties in SQL Server Management Studio.

To change the permissions for the local administrator group:

1. From Object Explorer, right-click the instance that you want to change and then click

Properties.

2. Click General.

3. Click Show Advanced (All) Properties.

4. Change the value of the Security \ BuiltInAdminsAreServerAdmins property. To

disallow administrative permissions on Analysis Services, set the property to false;

otherwise, set the property to true (the default).

To change the permissions for the service account:

1. From Object Explorer, right-click the instance that you want to change and then click

Properties.

2. Click General.

3. Click Show Advanced (All) Properties.

4. Change the value of the Security \ ServiceAccountIsServerAdmin property. To

disallow administrative permissions on Analysis Services, set the property to false;

otherwise, set the property to true (the default).

To allow or revoke administrative permission on Analysis Services to individual users or groups:

1. From Object Explorer, right-click the instance that you want to change and then click

Properties.

2. Click Security.

3. Add or remove Windows users or groups from the list of users with administrative

permission to the server.

Using SQL Server Management Studio to manage roles
You can create, edit, and delete roles from SQL Server Management Studio. For more

information about how to use SQL Server Management Studio to manage roles, see Manage

Roles by Using SSMS (https://docs.microsoft.com/sql/analysis-services/tabular-

models/manage-roles-by-using-ssms-ssas-tabular). We recommend that you use SQL Server

Management Studio primarily to add and remove role members. Roles are best created in SQL

Server Data Tools.

You can also script out a role definition from SQL Server Management Studio.

To script out a role definition:

1. From Object Explorer, navigate to the role that you want to script out.

2. Right-click the role and then click Properties.

3. Click Script.

https://docs.microsoft.com/sql/analysis-services/tabular-models/manage-roles-by-using-ssms-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/tabular-models/manage-roles-by-using-ssms-ssas-tabular

Only the script created from the Properties page contains the row filter definitions. If you right-

click the role in Object Explorer and then click a scripting option (create, alter, or delete), the

script generated does not include the row filters and cannot be used for administrative

purposes.

If you are an administrator on the tabular instance, you can also use SQL Server Management

Studio to test security for the tabular model and to browse a tabular model using a different role

or user name. For more information, see “Testing roles”.

Using AMO to manage roles
You should only use AMO to add and remove role members. Although the AMO framework

does have methods to create roles, delete roles, and modify role permissions, these methods

may not be supported in future releases of SQL Server.

Programs that add or remove role members must be run byusers with administrative permission

on the tabular instance or database that is being modified. Users with only read or process

permission do not have sufficient rights to add or remove role members.

The following C# code shows how to add a role member by name. This code uses the role

created in the CustomDataTest example provided earlier.

Server s = newServer();
s.Connect(".\\TABULAR");

Database db = s.Databases.FindByName("CustomDataTest");
Role r = db.Roles.FindByName("Role");

r.Members.Add(newRoleMember("domain\\username"));
r.Update();

s.Disconnect();

The code does the following:

 Connects to a tabular instance named “.\TABULAR”.

 Gets the role named “Role” from the “CustomDataTest” database. This is a two-step

operation: first the program finds the database and then the program finds the role.

 Adds the user named “domain\username” to the role named “Role”. This is a two-step

operation: first the program queues up the role member addition and then the program

updates the role on the server.

 Disconnects from the server.

The following C# code shows how to remove a role member by name.

Server s = newServer();
s.Connect(".\\TABULAR");

Database db = s.Databases.FindByName("CustomDataTest");
Role r = db.Roles.FindByName("Role");

r.Members.RemoveAt(r.Members.IndexOf(r.Members.Cast<RoleMember>().First(user =>
user.Name == "domain\\username")));
r.Update();

s.Disconnect();

The code does the following:

 Connects to a tabular instance named “.\TABULAR”.

 Gets the role named “Role” from the “CustomDataTest” database. This is a two-step

operation: first the program finds the database and then the program finds the role.

 Removes the user named “domain\username” to the role named “Role”. Because the list

of role members is of type RoleMemberCollection, which implements IList, the role

member list must be cast to the generic IList<RoleMember> before the program can

search for a role member by name using the LINQ extension method First(). After the

program queues up the role member removal, the program then updates the role on the

server.

 Disconnects from the server.

Notice that in both examples, the roles on the server are not updated until r.Update() is called.

This means that you can queue many add or remove operations before updating the server,

which improves performance.

For readability, these programs do not handle errors. Before using these examples in

production, add some error handling to the code.

Using AMO for PowerShell to manage roles
SQL Server 2012 introduced 11Windows PowerShell cmdlets for administering both

multidimensional and tabular instances of Analysis Services. For general information about

using PowerShell with Analysis Services, see PowerShell scripting in Analysis Services

(https://docs.microsoft.com/sql/analysis-services/instances/powershell-scripting-in-analysis-

services). For a list of available cmdlets, seeAnalysis Services PowerShell

Reference(https://docs.microsoft.com/sql/analysis-services/powershell/analysis-services-

powershell-reference).

You can use the Add-RoleMember and Remove-RoleMember cmdlets to add and remove role

members. These cmdlets can be used interactively in the sqlps shell or unattended in scripts or

SQL Server Agent jobs.For more information about Add-RoleMember, see Add-RoleMember

cmdlet (https://docs.microsoft.com/sql/analysis-services/powershell/add-rolemember-cmdlet).

For more information about Remove-RoleMember, seeRemove-RoleMember

cmdlet(https://docs.microsoft.com/sql/analysis-services/powershell/remove-rolemember-

cmdlet).

If you are using these cmdlets interactively, you must be an administrator on the tabular

instance or be a member of a role with administrative permission on the tabular database for

these cmdlets to execute successfully. If these cmdlets are part of an unattended script or a

SQL Server agent job, the user running the script or job must have administrative permission on

https://docs.microsoft.com/sql/analysis-services/instances/powershell-scripting-in-analysis-services
https://docs.microsoft.com/sql/analysis-services/powershell/analysis-services-powershell-reference
https://docs.microsoft.com/sql/analysis-services/powershell/analysis-services-powershell-reference
https://docs.microsoft.com/sql/analysis-services/powershell/analysis-services-powershell-reference
https://docs.microsoft.com/sql/analysis-services/powershell/add-rolemember-cmdlet
https://docs.microsoft.com/sql/analysis-services/powershell/add-rolemember-cmdlet
https://docs.microsoft.com/sql/analysis-services/powershell/remove-rolemember-cmdlet
https://docs.microsoft.com/sql/analysis-services/powershell/remove-rolemember-cmdlet

the tabular instance or database for the cmdlets to execute successfully. Users with only read or

process permission do not have sufficient rights to add or remove role members.

Managing connections to relational data sources from Analysis Services
This section of the whitepaper describes some security considerations for connecting to

relational data sources. This information is relevant for tabular models that are not DirectQuery

enabled. DirectQuery enabled models have a different set of considerations and a discussion of

those considerations is out of the scope of this document. For more information about

DirectQuery, see Using DirectQuery in the Tabular BI Semantic

Model(http://msdn.microsoft.com/en-us/library/hh965743.aspx).

Figure 18 shows a typical machine topology for an in-memory tabular workload.

Analysis Services
(Enterprise or BI edition)

Reporting client

Reporting client

Relational data source
(SQL Server, Oracle,
Teradata, PDW, etc)

Figure 18:A typical machine topology for an in-memory tabular workload.

Analysis Services queries one or more relational data sources to the fetch data that is loaded

into the tabular model. End users of reporting clients query Analysis Services, which returns

results based on data that it previously loaded into memory.

Analysis Services uses the impersonation settings to determine the credentials to use when it

queries the relational data source. For tabular models running in in-memory mode, three types

of impersonation are supported:

 Impersonating a named Windows user

 Impersonating the Analysis Services service account

 Inheriting the impersonation settings defined on the tabular database

http://msdn.microsoft.com/en-us/library/hh965743.aspx

The impersonation settings for a data source are initially defined in SQL Server Data Tools

when data is imported using the Import Wizard. These settings can be modified in SQL Server

Data Tools in the Existing Connections dialog box. Only the first two options are available in

the Import Wizard.

Before you deploy the model, you can change the impersonation settings in the Deployment

Wizard so that you are using the appropriate settings for the production data source. After

deployment, you can change the impersonation settings by modifying the connection properties

in SQL Server Management Studio.

We recommend that if you are connecting to SQL Server using integrated security (the default),

configure your model to impersonate a specific Windows user for connecting to a data source

when processing. The Analysis Services service account should have the least possible

permissions on the server, and generally it should not have access to data sources.

If Analysis Services and the relational data source are in the same domain, Analysis Services

can simply pass the credentials to the data source without additional configuration. However, if

there is a domain or forest boundary between Analysis Services and the data source, there

must be a trust relationship between the two domains.

Impersonation credentials are required even if another method, such as SQL authentication, is

used by the relational data source to authenticate the user before returning query results. The

impersonation credentials are used to connect to the data source. This connection attempt may

fail if the user that Analysis Services is impersonating does not have network access to the data

source. After the connection is established, the second authentication method (if applicable) is

used by the data source to return the query results.

SQL Server Data Tools also connects to relational data sources while modeling. Figure 19

shows a typical machine topology in a development environment.

Analysis Services
(Enterprise or BI edition)

SQL Server
Data Tools Relational data source

(SQL Server, Oracle,
Teradata, PDW, etc)

Process

Preview and filter

Figure 19:A typical topology in a development environment.

SQL Server Data Tools queries the relational data source when the user previews data from the

relational data sourcein the Import Wizard, in the Table Properties dialog box, or in the

Partition Manager. When SQL Server Data Tools connects to the relational data source, it

impersonates the current user’s credentials. This is because SQL Server Data Tools does not

have access to the impersonation credentials stored in the workspace database and these

preview and filter operations have no impact on the workspace database.

When the user processes data in SQL Server Data Tools, Analysis Services uses the

credentials specified in the Import Wizard or the Existing Connectionsdialog box to query the

data source.

Managing connections to the tabular model
As described in the section “Connecting to tabular models”, there are several ways that users

can connect to tabular models. Users can connect directly using a connection string or .bism

file, or indirectly using an .rsds file or through a middle-tier application.Each connection method

has its own set of security requirements. This section of the whitepaperdescribes the

requirements in each scenario.

Connecting directly to a tabular model using a connection string
Many client reporting applications, such as Excel, allow users to specify a connection string to

connect to Analysis Services. These connections can be entered manually by the user or

connections can be saved in an Office Data Connection(.odc) file for reuse. Note that Power

View cannot connect to tabular models using this method.

The following table summarizes the major security design aspects for using direct connections

to the tabular model.

Design aspect Configuration

Topology Usually, reporting clients and the tabular instance reside on the
same domain.

Credentials All users must use Windows credentials. These credentials are
passed directly to Analysis Services from the reporting client.

Authentication Analysis Services authenticates end users of the reporting client
using their Windows credentials unless they connect to Analysis
Services over HTTP.

Permissions All users of the reporting client must be members of a role with
read permission on the tabular database.

Dynamic security Dynamic security can be implemented using the USERNAME()
function. The CUSTOMDATA() function should not be used for
security when clients connect directly to Analysis Services.

Kerberos Not required between client and tabular instanceif there is a single
hop between the client and the tabular instance. If there are
multiple hops, for example if domain boundaries are crossed,
Kerberos is required.

Table 5:Security considerations for using direct connections to Analysis Services

Usually, clients connect directly to Analysis Services by specifying the server and instance

name. However, you can configure a tabular instance for HTTP or HTTPS access instead. A

discussion of configuring HTTP access to Analysis Services is outside of the scope of this

document. For more information about configuring HTTP access, see Configure HTTP Access

to Analysis Services on Internet Information Services 7.0 (http://msdn.microsoft.com/en-

us/library/gg492140.aspx). When HTTP access is configured, authentication happens first on

IIS.Then, depending on the authentication method used for http access, a set of Windows user

credentials is passed to Analysis Services. For more information about IIS authentication, see

Configure HTTP Access to Analysis Services on IIS 8.0 (https://docs.microsoft.com/en-

us/sql/analysis-services/instances/configure-http-access-to-analysis-services-on-iis-8-0).

Also, reporting clients typically reside on the same domain as the tabular instance. However,

reporting clients can communicate with tabular instances across domain or forest boundaries if

there is a trust relationship between the two domains. A discussion of this configuration is

outside of the scope of this document.

Connecting to a tabular model using a .bism file
The BI semantic model connection file is a new content type for SharePoint that enables you to

connect to Analysis Services databases or PowerPivot for SharePoint models from reporting

clients. This content type is available when PowerPivot for SharePoint is configured on the farm.

For more information about .bism files, see PowerPivot BI Semantic Model Connection

(https://docs.microsoft.com/sql/analysis-services/power-pivot-sharepoint/power-pivot-bi-

semantic-model-connection-bism).

.bism files are especially useful when Power View is the reporting client for the tabular model.

When there is a .bism file in a SharePoint library, you can create a Power View report using the

Create Power View Report quick launch command. You can also use .bism files from other

reporting clients, including Excel, to establish a connection to a tabular model.

The following table summarizes the major security design aspects when .bism files are used to

connect to a tabular model from Power View.

Design aspect Configuration

Topology There is a SharePoint farm that hosts PowerPivot for SharePoint
and Reporting Services. The tabular instance of Analysis Services
typically resides outside of the SharePoint farm.

Credentials All users must use Windows credentials to connect to Power
View.

Authentication Reporting Services first tries to connect to Analysis Services by
impersonating the user running Power View. If Kerberos
constrained delegation is configured, this connection succeeds.
Otherwise, Reporting Services tries to connect to Analysis
Services using the credentials of the Reporting Services service
account, specifying the name of the Power View user as the
EffectiveUserName in the connection string. If the Reporting

http://msdn.microsoft.com/en-us/library/gg492140.aspx
http://msdn.microsoft.com/en-us/library/gg492140.aspx
https://docs.microsoft.com/sql/analysis-services/instances/configure-http-access-to-analysis-services-on-iis-8-0
https://docs.microsoft.com/sql/analysis-services/power-pivot-sharepoint/power-pivot-bi-semantic-model-connection-bism

Services service account is an administrator on the tabular
instance, the connection succeeds, otherwise the connection
attempt fails with an error.

Permissions All Power View users must be members of a role with read
permission on the tabular database.

If Kerberos with constrained delegation is not configured, the
Reporting Services service account must be an administrator in
the tabular instance.

Dynamic security Dynamic security can be implemented using the USERNAME()
function. The CUSTOMDATA() function cannot be used for
security because additional connection properties cannot be
added to .bism files using the .bism file editor in SharePoint.

Kerberos Kerberos is required, unless the Reporting Services service
account is an administrator on the tabular instance or the tabular
instance is on a machine inside the SharePoint farm.

Table 6:Security considerations when using .bism files to connect to tabular models from Power

View

For more information about configuring Power View and .bism files Analysis Services is outside

of the SharePoint farm, seePower View, Tabular mode databases, Kerberos and

SharePoint(http://www.powerpivotblog.nl/power-view-tabular-mode-databases-sharepoint-and-

kerberos)andhttp://www.sqlpass.org/summit/2011/Speakers/CallForSpeakers/SessionDetail.asp

x?sid=2027.

Connecting to a tabular model from Excel using a .bism file has a different set of security

considerations than those for Power View. This is because credentials are not delegated from

SharePoint to Analysis Services when Excel is used; instead, credentials are passed directly

from Excel to Analysis Services.

The following table summarizes the major security design aspects when .bism files are used to

connect to a tabular model from Excel.

Design aspect Configuration

Topology There is a SharePoint farm that hosts PowerPivot for SharePoint.
The tabular instance of Analysis Services typically resides outside
of the SharePoint farm. Excel clients typically reside in the same
domain as the tabular instance.

Credentials All users must use Windows credentials to connect to Excel.

Authentication Analysis Services authenticates Excel users using their Windows
credentials.

Permissions All Excel users must be members of a role with read permission
on the tabular database.

Dynamic security Dynamic security can be implemented using the USERNAME()
function. The CUSTOMDATA() function cannot be used for
security if you are using the quick launch commands in
SharePoint to create Excel files because additional connection
properties cannot be added to .bism files.

Kerberos Not required between client and tabular instance when both are

http://www.powerpivotblog.nl/power-view-tabular-mode-databases-sharepoint-and-kerberos
http://www.powerpivotblog.nl/power-view-tabular-mode-databases-sharepoint-and-kerberos
http://www.powerpivotblog.nl/power-view-tabular-mode-databases-sharepoint-and-kerberos
http://www.sqlpass.org/summit/2011/Speakers/CallForSpeakers/SessionDetail.aspx?sid=2027
http://www.sqlpass.org/summit/2011/Speakers/CallForSpeakers/SessionDetail.aspx?sid=2027
http://www.sqlpass.org/summit/2011/Speakers/CallForSpeakers/SessionDetail.aspx?sid=2027

on the same domain.

Table 7:Security considerations when using .bism files to connect to tabular models from Excel

The same security considerations about HTTP, HTTPS, and cross-domain connectivity

described in the section “Connecting directly to a tabular model using a connection string” also

apply when connecting to a tabular instance from Excel using a .bism file. For details, see the

previous section.

You can use .bism files to connect to tabular models in other scenarios. For example, you can

use a .bism filename in the place of a database name in the connection string to Analysis

Services. The security considerations in these scenarios are similar to those when connecting to

a tabular model from Excel using a .bism file. The main difference is that if you are

implementing a middle-tier application that connects to a tabular model using a .bism file, you

can use CUSTOMDATA() to secure the tabular model.

Connecting to a tabular model using an.rsds file
.rsds files are used by Reporting Services to connect to Analysis Services models when

Reporting Services is running in SharePoint Integrated Mode. For more information about .rsds

files, seeCreate, Modify, and Delete Shared Data Sources

(SSRS)(https://docs.microsoft.com/sql/reporting-services/report-data/create-modify-and-delete-

shared-data-sources-ssrs).

.rsds files are useful in the following scenarios:

 Use when Power View is configured on the SharePoint farm but PowerPivot for

SharePoint is not. .rsds files can be used as the data source for Power View reports

instead of .bism files.

 Use when connecting to Reporting Services reports using credentials that are not

Windows credentials.

 Use when Analysis Services resides outside of the SharePoint farm, and configuring

Kerberos or elevating the privileges of the account running the Reporting Services

application are not acceptable. You can configure .rsds files to use stored credentials,

and these credentials do not have to be delegated.

The following table summarizes the major security design aspects when .rsds files are used to

connect to a tabular model.

Design aspect Configuration

Topology The .rsds file is uploaded to the SharePoint farm hosting
Reporting Services. The tabular instance typically resides on a
machine outside of the SharePoint farm.

Credentials End users can connect to Reporting Services using Windows
credentials, no credentials, or other credentials.

Reporting Services either impersonates the Windows user
connected to the report or sends stored credentials to the tabular
instance.

https://docs.microsoft.com/sql/reporting-services/report-data/create-modify-and-delete-shared-data-sources-ssrshttp
https://docs.microsoft.com/sql/reporting-services/report-data/create-modify-and-delete-shared-data-sources-ssrshttp
https://docs.microsoft.com/sql/reporting-services/report-data/create-modify-and-delete-shared-data-sources-ssrshttp

Authentication If impersonation is used, Analysis Services authenticates the
users connected to the reports.

If stored credentials are used, Reporting Services authenticates
the users connected to the reports and then passes a set of
stored credentials to Analysis Services. Analysis Services only
authenticates the stored credentials.

Permissions When impersonation is used, all Reporting Services users must
be members of a role with read permission on the tabular
database.

When stored credentials are used, only the account specified in
the .rsds file must be a member of a role with read permission on
the tabular database.

Dynamic security Dynamic security can be implemented using the USERNAME()
function. The CUSTOMDATA() function cannot be used for
security because users can manually edit the connection string in
the .rsds file, potentially causing unintended data access.

Kerberos Not required unless impersonating a Windows user across
SharePoint farm boundaries.

Table 8:Security considerations when using .rsds files

For more information about configuring Reporting Services to connect to tabular databases, see

http://www.sqlpass.org/summit/2011/Speakers/CallForSpeakers/SessionDetail.aspx?sid=2027

Connecting to a tabular model from a middle-tier application
One advantage of using custom middle-tier applications to connect to a tabular instance is that

you can use custom dynamic security using the CUSTOMDATA() function. You can use

CUSTOMDATA() in this scenario because access to Analysis Services is restricted to only the

user specified in the middle-tier application. End users cannot craft their own connection strings,

so they can’t get access to data unintentionally.

Otherwise, using a custom middle-tier application is conceptually similar to other multi-hop

scenarios using .bism or .rsds files.

The following table summarizes the major security design aspects when .rsds files are used to

connect to a tabular model.

Design aspect Configuration

Topology The middle-tier application typically connects to a tabular instance
on a different machine in the same domain.

Credentials End users can connect to the reporting client application using
Windows credentials, no credentials, or other credentials.

The middle-tier application either delegates Windows user
credentials to Analysis Services or, if an authentication method
other than Windows authentication is used, maps the supplied
credentials to a Windows user account and connects to Analysis
Services using the credentials stored in the middle-tier

http://www.sqlpass.org/summit/2011/Speakers/CallForSpeakers/SessionDetail.aspx?sid=2027

application.

Authentication If credentials are delegated, Analysis Services authenticates the
users connected to the reports.

If the middle-tier application uses stored credentials, Analysis
Services only authenticates the stored credentials. The middle-tier
application authenticates the end users of reports.

Permissions When credentials are delegated, all users of the reporting client
must be members of a role with read permission on the tabular
database.

When stored credentials are used, only the account specified by
the middle-tier application must be a member of a role with read
permission on the tabular database.

Dynamic security Dynamic security can be implemented using the USERNAME()
function. The CUSTOMDATA() function can be used when the
middle-tier application uses stored credentials to connect to the
tabular model, and end users of reports do not have access to the
underlying tabular database.

Kerberos Required if delegating credentials. Not required if using stored
credentials or if using the EffectiveUserName connection string
parameter to delegate a user’s credentials.

Table 9:Security considerations when connecting to a middle-tier application from Analysis

Services

Security in the modeling environment (SQL Server Data Tools)
There are some special security considerations for the SQL Server Data Tools modeling

environment. These considerations pertain to the configuration of the workspace database

instance, the handling of tabular project backups, and the impersonation settings used by SQL

Server Data Tools when connecting to data sources.

Before you can use SQL Server Data Tools, you must specify a tabular instance to use as the

workspace database server instance. You must be an administrator on this tabular instance.

While you are working, all changes that you make in SQL Server Data Tools are automatically

reflected on the workspace database instance.

Any administrator on the tabular instance and any role member for the model can access the

workspace database, even before you deploy the model. If you do not want others to see

changes before the model is deployed, install the tabular instance on the same machine as SQL

Server Data Tools, ensure that no other users have administrative access to the machine, and

ensure that the Analysis Services instance cannot be reached through the firewall. This is

especially important for DirectQuery enabled models, because the workspace database

contains cached data by default, even if the model is a DirectQuery only model and will not

contain any cached data when it is deployed.

Also, when choosing a workspace database instance, you must consider the permissions given

to the service account running the Analysis Services instance. By default, the service account is

set to the NT Service\MSSQLServerOLAPService account, which does not have permission to

access files on network shares or in user folders such as the My Documents folder. To enable

all functionality in SQL Server Data Tools, including importing metadata and data from

PowerPivot workbooks and taking backups of tabular projects, the service account for the

workspace database instance must have access to these file locations. Consider changing the

user running the service account to one that has sufficient permission to access these common

file locations. For general information about configuring service accounts, see Configure Service

Accounts (https://docs.microsoft.com/sql/analysis-services/instances/configure-service-

accounts-analysis-services). For information about configuring the workspace database server

and its service account, see Configuring a workspace data server

(http://blogs.msdn.com/b/cathyk/archive/2011/10/03/configuring-a-workspace-database-

server.aspx).

There are a few other security considerations aside from workspace database server

configuration. If you have configured SQL Server Data Tools to take backups of tabular projects

when you save the project, these backups are unencrypted. Ensure that these files are stored in

a secure location that is inaccessible to other users. For more information about using backups

in SQL Server Data Tools, see Working with backups in the tabular designer

(http://blogs.msdn.com/b/cathyk/archive/2011/09/20/working-with-backups-in-the-tabular-

designer.aspx). Also, the user running SQL Server Data Tools must have access to relational

data sources for some user interface components to work correctly. For more information, see

“Managing connections to relational data sources from Analysis Services”.

Security in DirectQuery enabled models before SQL Server 2016
Securing a DirectQuery enabled model is fundamentally different from securing an in-memory

model. Many of the security designs discussed earlier in this whitepaper do not apply to

DirectQuery enabled models because DirectQuery enabled models do not support row security

or dynamic security. Also, because DirectQuery enabled models connect to the data source in

two scenarios – when querying the model and when processing the model – the impersonation

requirements change. The DirectQuery engine can impersonate the current user when querying

the data source, thus allowing the SQL Server security model to be used and therefore

changing the way that the data warehouse is secured.

An in-depth discussion of security in DirectQuery enabled models is out of the scope of this

document. For an in-depth discussion of security considerations in DirectQuery enabled models,

see the DirectQuery in the BI Semantic Modelwhitepaper(http://msdn.microsoft.com/en-

us/library/hh965743.aspx).

Security in DirectQuery enabled models post SQL Server 2016
SQL Server 2016 adds support for row security or dynamic security for DirectQuery enabled

models.Regardless if the model is in DirectQuery mode or not using bi-directional cross filter to

secure your models will work as described in the chapter “Enabling dynamic security using

Tabular models using bi-directional relationships.”

https://docs.microsoft.com/sql/analysis-services/instances/configure-service-accounts-analysis-services
https://docs.microsoft.com/sql/analysis-services/instances/configure-service-accounts-analysis-services
https://docs.microsoft.com/sql/analysis-services/instances/configure-service-accounts-analysis-services
http://blogs.msdn.com/b/cathyk/archive/2011/10/03/configuring-a-workspace-database-server.aspx
http://blogs.msdn.com/b/cathyk/archive/2011/09/20/working-with-backups-in-the-tabular-designer.aspx
http://msdn.microsoft.com/en-us/library/hh965743.aspx
http://msdn.microsoft.com/en-us/library/hh965743.aspx
http://msdn.microsoft.com/en-us/library/hh965743.aspx

DirectQuery models have one additional benefit for security, you can pass the user who is

connecting to Analysis Services on to the underlying database, thus leveraging any security

placed on the data source directly. To do this we can use an option available in Analysis

Services that allows us to connect to a data source using the credentials of the current user as

is described here: https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-

models/set-impersonation-options-ssas-multidimensional#bkmk_options

For more information on Direct Query the whitepaper “Direct Query in SQL Server 2016

Analysis Services” is available.

Example: Leveraging SQL Server Row Level Security
Let’s look at an example where we pass on the username from SSAS to the underlying

database.In this case, you could have something like the following architecture: Dashboards

and reports in Power BI that connect to an on premise SSAS server running DirectQuery mode

connecting to SQL Server. All with the same username flowing from Power BI all the way down

to SQL Server.

Let’s see how this works in SSAS.The Power BI and gateway part work as usual - no changes

are needed there. The example below is using Tabular DirectQuery, but the same works for

Multidimensional ROLAP.

I have this simple model with just 1 table set to DirectQuery mode:

I am using the service account to connect to the data source (go to Existing connections, Edit

Datasouce, Impersonations to get this dialog)

https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models/set-impersonation-options-ssas-multidimensional#bkmk_options
https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models/set-impersonation-options-ssas-multidimensional#bkmk_options
https://blogs.msdn.microsoft.com/analysisservices/2017/04/06/directquery-in-sql-server-2016-analysis-services-whitepaper/
https://blogs.msdn.microsoft.com/analysisservices/2017/04/06/directquery-in-sql-server-2016-analysis-services-whitepaper/
https://i0.wp.com/www.kasperonbi.com/wp-content/uploads/2016/10/image.png

Note: Best practice is to not use the service account as impersonation setting in any

production environment

Now, if I connect to this model with Excel and run profiler on SQL Server we can see the user

that is running the queries to SQL Server and logging into SQL using the service account SSAS

is running under:

https://i0.wp.com/www.kasperonbi.com/wp-content/uploads/2016/10/image-1.png

Now instead of the Service Account I want to use the credentials of the user who is connecting

to my model and use that to connect to the SQL database. You cannot do this in the SSDT UI.

Instead I publish the model to my server and open the Connection Dialog in SSMS:

https://i2.wp.com/www.kasperonbi.com/wp-content/uploads/2016/10/image-2.png

As you can see this is still set to impersonate the service account:

Clicking here will give me a new option that I didn’t have in SSDT, one that allows me to use the

credentials of the current user:

https://i0.wp.com/www.kasperonbi.com/wp-content/uploads/2016/10/image-3.png
https://i1.wp.com/www.kasperonbi.com/wp-content/uploads/2016/10/image-4.png

I press OK and connect again with Excel to my model.Now I will be able to see that my

username is being used to connect to SQL Server:

https://i0.wp.com/www.kasperonbi.com/wp-content/uploads/2016/10/image-5.png

And that’s it.Now SSAS passes on the credentials of the current user. If you have RLS

configured at your SQL Server SQL database, it will now only return the rows approved for this

user. This option works is available for both Multidimensional and Tabular models.

Of course, passing along credentials between machines can also complicate matters.In my

scenario things are easy as I have all services on a single box.But in a real-world scenario,

SSAS and the SQL database system will not be on the same machine. In those cases, you will

need to configure Kerberos delegation between the two machines. Below you can find multiple

blog post of SSAS and similar services that should give you a starting point on how to configure

this:

https://msdn.microsoft.com/en-us/library/dn194199.aspx

http://sqlmag.com/sql-server-reporting-services/implement-kerberos-delegation-ssrs

https://shuggill.wordpress.com/2015/03/06/configuring-sql-server-kerberos-for-double-hop-

authentication/

https://msdn.microsoft.com/en-us/library/dn194199.aspx
http://sqlmag.com/sql-server-reporting-services/implement-kerberos-delegation-ssrs
https://shuggill.wordpress.com/2015/03/06/configuring-sql-server-kerberos-for-double-hop-authentication/
https://shuggill.wordpress.com/2015/03/06/configuring-sql-server-kerberos-for-double-hop-authentication/
https://i1.wp.com/www.kasperonbi.com/wp-content/uploads/2016/10/image-6.png

Conclusion
Securing a tabular BI semantic model is conceptually simple. Windows users or groups are

added to roles, and a set of security permissions are defined on a per-role basis. These

permissions determine if the user can administer, process, or read the model. Read permission

can be further refined by adding row filters to tables in the model. These filters can be static or

dynamic. In practice, there are many factors to take in to consideration when implementing and

deploying a tabular model with security defined. You must plan to address all of these factors

when developing your tabular models.

This paper gave an overview of the tabular security model, explained how to implement static

and dynamic security in several scenarios, described how to manage roles and permissions,

and gave suggestions for how to manage connections to Analysis Services and to relational

data sources.

Additional resources
Roles (SSAS Tabular) https://docs.microsoft.com/sql/analysis-services/tabular-models/roles-

ssas-tabular

Impersonation (SSAS Tabular) https://docs.microsoft.com/sql/analysis-services/tabular-

models/impersonation-ssas-tabular

Kerberos by CSS SQL Server Engineers http://blogs.msdn.com/b/psssql/archive/tags/kerberos/

Deployment checklist: Reporting Services, Power View, and PowerPivot for SharePoint

http://msdn.microsoft.com/en-us/library/hh231687(v=sql.110).aspx

DirectQuery in SQL Server Analysis Services

2016https://blogs.msdn.microsoft.com/analysisservices/2017/04/06/directquery-in-sql-server-

2016-analysis-services-whitepaper/

Programming AMO Security Objects https://docs.microsoft.com/sql/analysis-

services/multidimensional-models/analysis-management-objects/programming-amo-security-

objects

QuickStart: Learn DAX Basics in 30 Minutes https://support.office.com/article/QuickStart-Learn-

DAX-Basics-in-30-Minutes-51744643-C2A5-436A-BDF6-C895762BEC1A

For more information:

http://www.microsoft.com/sqlserver/: SQL Server Web site

https://azure.microsoft.com/services/analysis-services/: Azure Analysis Services

http://technet.microsoft.com/en-us/sqlserver/: SQL Server TechCenter

https://docs.microsoft.com/sql/analysis-services/tabular-models/roles-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/tabular-models/roles-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/tabular-models/impersonation-ssas-tabular
https://docs.microsoft.com/sql/analysis-services/tabular-models/impersonation-ssas-tabular
http://blogs.msdn.com/b/psssql/archive/tags/kerberos/
http://msdn.microsoft.com/en-us/library/hh231687(v=sql.110).aspx
https://blogs.msdn.microsoft.com/analysisservices/2017/04/06/directquery-in-sql-server-2016-analysis-services-whitepaper/
https://blogs.msdn.microsoft.com/analysisservices/2017/04/06/directquery-in-sql-server-2016-analysis-services-whitepaper/
https://docs.microsoft.com/sql/analysis-services/multidimensional-models/analysis-management-objects/programming-amo-security-objects
https://docs.microsoft.com/sql/analysis-services/multidimensional-models/analysis-management-objects/programming-amo-security-objects
https://docs.microsoft.com/sql/analysis-services/multidimensional-models/analysis-management-objects/programming-amo-security-objects
https://support.office.com/article/QuickStart-Learn-DAX-Basics-in-30-Minutes-51744643-C2A5-436A-BDF6-C895762BEC1A
https://support.office.com/article/QuickStart-Learn-DAX-Basics-in-30-Minutes-51744643-C2A5-436A-BDF6-C895762BEC1A
http://www.microsoft.com/sqlserver/
https://azure.microsoft.com/services/analysis-services/
http://technet.microsoft.com/en-us/sqlserver/

http://msdn.microsoft.com/en-us/sqlserver/: SQL Server DevCenter

Did this paper help you? Please give us your feedback. Tell us on a scale of 1 (poor) to 5

(excellent), how would you rate this paper and why have you given it this rating? For example:

 Are you rating it high due to having good examples, excellent screen shots, clear writing,

or another reason?

 Are you rating it low due to poor examples, fuzzy screen shots, or unclear writing?

This feedback will help us improve the quality of whitepapers we release.

Send feedback.

http://msdn.microsoft.com/en-us/sqlserver/
mailto:sqlfback@microsoft.com?subject=White%20Paper%20Feedback:%20[Securing%20the%20Tabular%20BI%20Semantic%20Model]

